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Laboratory Permeability Errors from Annular Wall Flow

TeTsu K. TOKUNAGA*

ABSTRACT

Laboratory saturated hydraulic conductivity measurement errors
introduced by permeameter fluid flow within gaps between sample
cores and permeameter walls are estimated through a simple model
that idealizes gap flow as occuring within a smooth annulus. The
inner annulus boundary fluid velocity is matched to the Darcy ve-
locity within the sample core. The ratio of flow within the annulus
to that within the core, Q,.,/Q..... is shown to have both cubic and
linear dependence on the gap width. Q,.,/Q.... is also shown to be
inversely dependent on both the core permeability and the permea-
meter radius. Although the model is very idealized, the strong pos-
sibility of overestimating permeabilities in laboratory cores is dem-
onstrated. Related concerns include flow in fractured porous media,
and potential errors in interpreting solute travel times in laboratory
columns and field lysimeters.

Additional Index Words: permeameter, hydraulic conductivity,
preferential flow, fracture flow, solute travel time.

N LABORATORY MEASUREMENTS of the saturated hy-
draulic conductivity, K, it is generally assumed that
fluid flow occurs exclusively within the sample core.
Fluid flow within the annulus bounded by the lateral
surface of the core sample and the inner surface of the
permeameter tube is generally assumed to be insig-
nificant. In recent years, interest in measuring flow in
materials characterized by low hydraulic conductivi-
ties has been renewed (e.g., Neuzil, 1986). In mea-
surements of low permeability materials and media
subject to bulk volume changes, permeameter fluid
flow within gaps between sample walls and permea-
meter walls can become substantial, leading to erro-
neously large estimates of K,. This effect was noted in
a work by McNeal and Reeve (1964), in which a
method for separating central core flow from wall ef-
fects was presented. Significantly larger flux densities
due to wall effects were measured in that study. In the
present paper, wall flow errors are estimated using the
simplifying assumption that the flow occurs within a
smooth annular gap. Annular flow errors are ex-
pressed in terms of a ratio of gap flow to core flow.

Laminar Flow within an Annulus

Flow between a core sample and the permeameter
wall will be described by annular flow along the z di-
rection between two concentric cylinders of length L
as shown in Fig. 1. Although it is recognized that this
configuration is not likely in actual laboratory per-
meameters, it is quite likely that gaps spanning vary-
ing fractions of the full annular region can occur. The
inner cylinder wall of radius R, corresponds to the
lateral surface of the core. The outer cylinder wall of
radius R, corresponds to the inner surface of the per-
meameter tube. The ratio (R,/R,) is designated C. The
gap width 6 is equal to R, — R,. The surface at R, is
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idealized as a constant velocity boundary, with the
fluid velocity v.(R,) matched to the Darcy velocity
within the core. The surface at R, is treated as a no-
slip boundary. End effects at z = O and z = L are
assumed to have negligible influences on the annulus
velocity profile. The driving force for flow through the
annulus is the hydraulic head gradient, VH.

The solution to steady laminar flow in this system
is obtainable through a shell momentum balance, in
a manner closely following a nearly identical problem
described by Bird et al. (1960, p. 51-54). The only
difference between these problems is in the treatment
of the boundary at R,, where Bird et al. set W(R,) =
0. In cylindrical coordinates, the differential equation
to be solved is

4 dv.\ _ dH
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where u is the fluid viscosity, p is the fluid density, g
is the acceleration of gravity, and H is the hydraulic
head. The boundary conditions are
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Fig. 1. Permeameter wall and soil core with an annular gap.
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where k is the permeability of the core. In the follow-
ing developments, it will be more convenient to ex-
press core flow in terms of k rather than the saturated
hydraulic conductivity, K, = kpg/u, since use of the
former parameter permits cancellation of fluid prop-
erties. The solution to Eq. [1] subject to Eq. [2a, b] is

R3 ’
v(r) = ~pi#‘[l - (é)

1 — C* — (4k/R3)\, r |dH
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The volumetric flow rate through the annulus, Q,,,, is

obtained upon integrating Eq. {3] over the annular
cross-section area,

R
Oup = 27rf rv{rydr, [4a]
Ry
resulting in
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In the limit of k—0, Eq. [3] and [4b] become equiv-
alent to results presented in Bird et al. (1960), as ex-
pected.

The Flux through the Annulus Relative to that in
the Core

The volumetric flow through a sample of permea-
bility & 1s given by Darcy’s law
dH
Quure = — TR [5]
u dz
The quantity of interest is the ratio of flow through
the annular space vs. the flow through the sample core.
Dividing Eq. [4b] by Eq. [5] gives

Qu _ R[ . -y
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The dependence of the gap to core flux ratio on the
various system parameters is difficult to discern from
Eq. [6a] due to its complexity. Even the apparently
simple numerical evaluation of Eq. [6a] is susceptible
to error due to both the behavior of | — C"and In C
in the range of interest where C—1.

A clearer picture of the nature of the flux ratio can
be obtained through the use of a small parameter e
defined by ¢ = (1 — C). From the definition of C and
the gap width §, ¢ is also equal to the ratio 6/R,. Sub-
stituting € into Eq. [6a] and expanding In(1 — ¢) to at
least four terms results in
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when terms higher than ¢* are discarded. It is noted
in passing that without retaining at least four terms in
the expansion of In(1 — ¢), all terms in the numerator
of Eq. [6b] cancel. Since ¢ is a small parameter, Eq.
[6b] can be simplified to

Qoo Bl ko), (6c]

which in terms of the gap width § is
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Comparison with a Parallel Plate Model

Due to the complexity of Eq. [4b], [6a], and [6b], it
is of interest to consider a similar, though much sim-
pler problem, for comparison with Eq. [6d]. The sim-
pler model to be considered here is that of steady lam-
inar flow between two parallel plates, with one plate
surface velocity matched to a Darcy velocity. The sys-
tem is depicted in Fig. 2. Flow occurs in response to
a hydraulic head gradient along the z direction, in a
gap of width 4, and transverse length W. Fluid at the
surface defined by x = 0 is maintained at a constant
velocity equated to a Darcy velocity. Fluid at the op-
posite wall at x = 6 obeys the no-slip condition. The
velocity profile in this case is

_ g _x [ K aH
vi{x) = j 3 +<2 5)x+k}d2, (7

which when integrated over the cross-sectional area of

the gap results in
5° ké\ pg dH
o= Wl + = 2 8
Quiv (U+Juﬁ [8]

A comparison between Eq. [6d] and [8] can be made
by first equating the dimension W to 27R,, the gap
circumference in the annular flow problem. With this

-

s

(£9) vH

-k
1%1&& #
V,=(x=0) = q

+x<———(¥)—

Fig. 2. Flow between parallel plates, with one plate consisting of a
porous medium of finite permeability.
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change, dividing Eq. [8] by Eq. [5] results in the par-
allel plate approximation to Eq. [6]. This result is

3
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which becomes
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since R, ~ R,. The agreement between Eq. [6d] and
[9b] demonstrates that, when e—0, flow in an annular
gap is well approximated by flow through a parallel
plate gap.

Flow in Fractured Porous Media

The previous analysis of the parallel plate problem
is related to the processes of flow in macropores be-
tween soil aggregates as well as to flow in fractured
porous rock. To elaborate on this similarity, a simple
model of a parallel planar gap bounded by a porous
media of permeabilities &, and k, at x = O and x =
5 respectively is considered in the following analysis.
Fluid flow along the z direction is considered as be-
fore. In this case, the velocity profile is given by
pg dH { X3

v(x) = — a2

5 k|_k2
( 2+ 5 )x-&-k,],

which upon integration over the gap width & and
transverse width W gives

[10]
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When either k,—0, or k.—0, Eq. [11a] becomes equiv-
alent to Eq. [8] as expected. When k—0 at both sur-
faces, Eq. [11] results in the commonly used cubic flow
relation with a parallel plate fracture permeability equal
to 6>/12. This permeability is also commonly used to
characterize flow in fractured porous media. However,
from Eq. [11], it is evident that the true fracture
permeability is of the form

Ko = (%) + k [12]

where the second term accounts for finite velocities at
the fracture surfaces. The relative error introduced by
omission of this second term is equal to 12k/é°. This
relative error is generally small due to preferential flow
through the path of least resistance usually offered by
fractures. It is this same phenomenon that gives rise
to potentially large laboratory permeameter errors.

DISCUSSION

The inverse dependence of the ratio Qpapy/Qeore In EQ.
[6d] on the permeability k is reasonable. With higher
permeability materials, errors due to annular flow be-
come less significant. On the other hand, with very
low permeability materials, annular flow becomes a
very important source of experimental error. On the
right-hand side of Eq. [6d], the result is dominated by
the first term for reasonable values of the variables.
This cubic dependence agrees with the cubic law flow
result for flow within parallel plate gaps. The depen-
dence of Q,.p/Qcore ON gap width is plotted in Fig. 3,
for several values of k, with R, = 36 mm. The pre-
dicted flux ratios indicate that annular flow can con-
tribute quite significantly to the overall flow within a
permeameter, even at rather small gap widths. The
curve for the moderately low permeability core with
k = 10-"“m? indicates that an annular gap of only
about 10 um will lead to substantial errors in perme-
ability measurements for such materials. Gap flow er-
rors at even lower permeabilities can dominate mea-
sured flows since even micron-scale gaps will
contribute significantly to the overall flow. It is em-
phasized that the assumptions used in the above cal-
culations are very idealized. It is rather unlikely that
an annular gap of uniform width will be found under
most experimental conditions. Nevertheless, it ap-
pears likely that gaps along fractions of sample perim-
eters often occur. The calculations presented here serve
to demonstrate the potential for large measurement
errors, even with these likely fractional gaps.

With the currently increasing interest in measure-
ment of k in low permeability soil and rock materials
in association with hazardous waste disposal, annular
flow in laboratory measurements becomes a potential
source for very large errors. Annular flow errors in
laboratory measurements on low permeability mate-
rials are likely for two reasons. First, due to the inverse
k dependence of error effects demonstrated in Eq. [6d]
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Fig. 3. The effect of gap width on the ratio of fluxes in the annulus
to that in the core. Curves represent different permeabilities of

the core sample. In this example the permeameter radius is 30
mm.




and [9], low k materials are inherently more suscep-
tible to these errors. Second, in the case of rock sam-
ples that lack the plasticity found in unconsolidated
soils, core walls are much less capable of conforming
to the surfaces of a permeameter.

Observations of preferential water and solute flow
in field soils (e.g., Beven and Germann, 1982; Richter
and Jury, 1986) appear to arise from the same phe-
nomenon considered here. Saturated water flow
through annular permeameter gaps, through fractures
in porous rock, and through macropores in field soils
generally results in high flux densities and short solute
travel times. Another related process is that of water
and solute collection in lysimeters. Interpretation of
field lysimeter data can be complicated due to the pos-
sibility of wall flow effects overwhelming macropore
flow (Richter and Jury, 1986). The underlying effect
in all of the abovementioned processes is due ulti-
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. mately to the parabolic nature of fluid velocity profiles

at the pore (or fracture) scale.
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